43 research outputs found

    The role of spatial and temporal radiation deposition in inertial fusion chambers: the case of HiPER¿

    Full text link
    The first wall armour for the reactor chamber of HiPER will have to face short energy pulses of 5 to 20 MJ mostly in the form of x-rays and charged particles at a repetition rate of 5–10 Hz. Armour material and chamber dimensions have to be chosen to avoid/minimize damage to the chamber, ensuring the proper functioning of the facility during its planned lifetime. The maximum energy fluence that the armour can withstand without risk of failure, is determined by temporal and spatial deposition of the radiation energy inside the material. In this paper, simulations on the thermal effect of the radiation–armour interaction are carried out with an increasing definition of the temporal and spatial deposition of energy to prove their influence on the final results. These calculations will lead us to present the first values of the thermo-mechanical behaviour of the tungsten armour designed for the HiPER project under a shock ignition target of 48 MJ. The results will show that only the crossing of the plasticity limit in the first few micrometres might be a threat after thousands of shots for the survivability of the armour

    Crack mechanical failure in lithium niobate crystal under ion irradiation; novel simulation by extended finite elements

    Full text link
    Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation

    IFE Plant Technology Overview and contribution to HiPER proposal

    Full text link
    HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here

    Spectroelectrochemistry at free-standing carbon nanotubes electrodes

    Get PDF
    A versatile and low-cost methodology for fabricating free-standing carbon nanotubes (CNT) electrodes for electrochemical and spectroelectrochemical applications is described. The uniformity, flexibility and resistance to bending of these films make them one of the most interesting membranes in a wide range of applications. CNT electrodes were characterized by Raman spectroscopy and scanning electron microscopy and their electrochemical performance was assessed employing various redox species such as ferrocenemethanol, hexacyanoferrate (II) and dopamine. Free-standing single-walled CNT electrodes exhibit good conductivity and transparency to UV–vis radiation, making them suitable as optically transparent electrodes. This is exemplified by monitoring, using UV–vis absorption spectroelectrochemistry, the electrodeposition of gold nanoparticles (AuNPs) on one face of the free-standing CNT electrodes, while the other face remained unmodifiedMinisterio de Economía y Competitividad (CTQ2014-55583-R, CTQ2014-61914-EXP, CTQ2015-71955-REDT) and Junta de Castilla y León (BU033U16)Ministerio de Economía y Competitividad (CTQ2014-55583-R, CTQ2014-61914-EXP, CTQ2015-71955-REDT) and Junta de Castilla y León (BU033U16

    Fallo mecánico debido a grietas en Niobato de Litio bajo irradiación, simulación mediante elementos finitos

    Full text link
    Ion-induced nano-track in LiNbO3. Motivation. From macro to nanoscale. Finite element method for nano-structured materials. Simulations of X-cut and Z-cut in LiNbO3. Experiments versus Simulations. Conclusion

    Derivative UV/Vis spectroelectrochemistry in a thin-layer regime: deconvolution and simultaneous quantification of ascorbic acid, dopamine and uric acid

    Get PDF
    In this work, UV/Vis spectroelectrochemistry (SEC), in a thin-layer regime and parallel configuration, is selected to solve a complex mixture that contains dopamine (DA), ascorbic acid (AA) and uric acid (UA). These molecules, like many other biological compounds, are assuming a highly important place in analytical and biomedical fields due to the fundamental role that they play in human metabolism. In addition, low or high levels of these compounds are associated with diseases such as Parkinson’s disease. For this reason, the quantification of these biomolecules is becoming increasingly critical. However, some drawbacks must be overcome, because the three molecules coexist in the human body, and the species are subject to mutual interference. In fact, they are all oxidized at similar potentials, and their UV/Vis absorption bands overlap, greatly complicating their quantification. For this reason, derivative SEC together with suitable chemometric tools such as PARAFAC are proposed to solve this complex matrix. This technique allows us to separate the contribution of each of these molecules present in a sample and to quantify all of them, achieving high resolution and reproducibility. Besides, detection limits at the micromolar level are achieved for DA, AA and UA in mixture solutions. This work thus demonstrates the great potential for derivative potentiodynamic SEC combined with the appropriate chemometric tools in solving complex mixtures, a field where SEC is still taking the first steps.Ministerio de Economía y Competitividad (Grants CTQ2017-83935-RAEI/ FEDER, UE), Junta de Castilla y León (Grant BU297P18) and Ministerio de Ciencia, Innovación y Universidades (RED2018-102412- T). F.O. is grateful for the contract funded by Junta de Castilla y León, the European Social Fund and the Youth Employment Initiative. J.G.R. thanks theMinisterio de Economía y Competitividad for his postdoctoral contract (CTQ2017-83935-R AEI/FEDER, UE)

    Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices

    Get PDF
    This work aims at identifying common potential problems that future fusion devices will encounter for both magnetic (MC) and inertial (IC) confinement approaches in order to promote joint efforts and to avoid duplication of research

    Crack mechanical failure in ceramic materials under ion irradiation: case of lithium niobate crystal

    Full text link
    Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion- generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation

    Plasma–wall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials

    Get PDF
    Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too
    corecore